Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2239, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472201

RESUMO

The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe-Cu dual-atomic sites, vertically stacked Fe-Cu geometry in FePc@2D-Cu-N-C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu-N-C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug-drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.


Assuntos
Biomimética , Complexo IV da Cadeia de Transporte de Elétrons , Biocatálise , Transporte de Elétrons , Engenharia , Catálise
2.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317545

RESUMO

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

3.
Angew Chem Int Ed Engl ; 62(15): e202300119, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780128

RESUMO

Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA -N3 -coordinated SAzymes (MnSA -N3 -C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA -N4 -C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA -N3 -C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.


Assuntos
Técnicas Biossensoriais , Manganês , Colorimetria , Carbono , Peroxidases , Peroxidase , Catálise
4.
Anal Chem ; 92(4): 3354-3360, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32011882

RESUMO

Herein, we report on a two-dimensional amino-functionalized Ti3C2-MXene (N-Ti3C2-MXene)-based surface plasmon resonance (SPR) biosensor for detecting carcinoembryonic antigen (CEA) utilizing a sandwich format signal amplification strategy. Our biosensor employs an N-Ti3C2-MXene nanosheet-modified sensing platform and a signal enhancer comprising N-Ti3C2-MXene-hollow gold nanoparticles (HGNPs)-staphylococcal protein A (SPA) complexes. Ultrathin Ti3C2-MXene nanosheets were synthesized and functionalized with aminosilane to provide a hydrophilic-biocompatible nanoplatform for covalent immobilization of the monoclonal anti-CEA capture antibody (Ab1). The N-Ti3C2-MXene/HGNPs nanohybrids were synthesized and further decorated with SPA to immobilize the polyclonal anti-CEA detection antibody (Ab2) and serve as signal enhancers. The capture of CEA followed by the formation of the Ab2-conjugated SPA/HGNPs/N-Ti3C2-MXene sandwiched nanocomplex on the SPR chip results in the generation of a response signal. The fabricated N-Ti3C2-MXene-based SPR biosensor exhibited a linear detection range of 0.001-1000 PM with a detection limit of 0.15 fM. The proposed biosensor showed high sensitivity and specificity for CEA in serum samples, which gives it application potential in the early diagnosis and monitoring of cancer. We believe that this work also opens new avenues for development of MXene-based highly sensitive biosensors for determining various biomolecules.


Assuntos
Antígeno Carcinoembrionário/análise , Nanopartículas/química , Titânio/química , Técnicas Biossensoriais , Humanos , Ressonância de Plasmônio de Superfície
5.
Biosens Bioelectron ; 144: 111697, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536930

RESUMO

Surface plasmon resonance (SPR) has become a leading technique for in situ bioaffinity assay of diverse targets without need of fluorescent or enzymatic labeling. Nanomaterials-enhanced SPR sensors have developed rapidly and widened the application scope of SPR sensing technology. In this report we describe an ultrasensitive SPR biosensor for detecting carcinoembryonic antigen (CEA). Our SPR biosensor utilizes a Ti3C2-MXene-based sensing platform and multi-walled carbon nanotube (MWCNTs)-polydopamine (PDA)-Ag nanoparticle (AgNPs) signal enhancer. Ti3C2-MXene, a new class of two-dimensional (2D) transition metal carbides, offers a large hydrophilic-biocompatible surface ideal for SPR biosensing. Ti3C2-MXene/AuNPs composites after synthesis are then decorated with staphylococcal protein A (SPA) to orient and immobilize monoclonal anti-CEA antibody (Ab1) through its Fc region. By introducing MWCNTs-PDA-AgNPs-polyclonal anti-CEA antibody (MWPAg-Ab2) conjugate combined with a sandwich format, the present method provides a dynamic range for CEA determination of 2×10-16 to 2×10-8 M and a detection limit of 0.07 fM. This biosensing approach demonstrates good reproducibility and high specificity for CEA in real serum samples providing a promising method to evaluate CEA in human serum for early diagnosis and monitoring of cancer.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário/isolamento & purificação , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície , Anticorpos Anti-Idiotípicos/química , Anticorpos Anti-Idiotípicos/imunologia , Antígeno Carcinoembrionário/química , Ouro/química , Humanos , Nanoestruturas/química , Nanotubos de Carbono/química , Prata/química , Elementos de Transição/química
6.
Chem Commun (Camb) ; 55(36): 5271-5274, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993298

RESUMO

Herein, we develop an Fe-N/C-CNT nanomaterial with Fe-N3 units as a paradigm for excellent oxidase mimics by theoretical prediction and experimental implementation. The mechanism of the structure-dependent enzymatic activity is systematically investigated and elucidated from the perspective of the different configurations of M-Nx models (x = 0, 3, 4, and 5; M = Fe, Co, and Ni).


Assuntos
Materiais Biomiméticos/química , Compostos de Ferro/química , Nanoestruturas/química , Nanotubos de Carbono/química , Nitrogênio/química , Técnicas Biossensoriais/métodos , Catálise , Peróxido de Hidrogênio/química , Limite de Detecção , Estrutura Molecular , Oxirredução , Oxirredutases/metabolismo , Relação Estrutura-Atividade , Propriedades de Superfície
7.
Nanomicro Lett ; 11(1): 102, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138037

RESUMO

The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...